Preview

Bulletin of Science and Research Center of Construction

Advanced search

Evaluation of methods for calculating reinforced concrete structural members for the fatigue limit state

https://doi.org/10.37538/2224-9494-2020-4(27)-148-159

Abstract

Contained in the design codes of reinforced concrete structures, since 1962 and to the present, the method of calculating the endurance was compiled taking into account the generalization and analysis of data from numerous experimental and theoretical studies. Subsequent use of this method in the practice of designing reinforced concrete structural members has shown that during the operation of structural members properly designed with the requirements for fatigue destructions did not occur. At the same time, the analysis showed the difference between the domestic method and the approaches of foreign standards in terms of fatigue verification for reinforcing and prestressing steel. Further research has shown some imperfections in the method of design for fatigue of steel (both reinforcing and prestressing steel). Taking into account the data of the conducted computational and theoretical studies, as well as in order to harmonize with the main provisions of the fatigue calculation adopted in the design standards of a number of leading countries, it is useful to take into account the ultimate stress range along with the maximum stress within the load cycle. In this regard, it is planned to update the existing methodology for calculating for fatigue, which will be supplemented with new provisions for calculating of reinforcing and prestressing steel for fatigue. When updating the methodology, it is most appropriate to take into account other provisions of the existing methodology as much as possible. In particular, the previous approach to determining the internal stresses in concrete and reinforcing steel, as well as the calculation of fatigue for concrete under compression, will be maintained.

About the Authors

R. .. Sharipov
NIIZHB named after A. A. Gvozdev JSC Research Center of Construction
Russian Federation


S. .. Zenin
NIIZHB named after A. A. Gvozdev JSC Research Center of Construction
Russian Federation


S. .. Krylov
NIIZHB named after A. A. Gvozdev JSC Research Center of Construction
Russian Federation


Y. .. Volkov
NIIZHB named after A. A. Gvozdev JSC Research Center of Construction
Russian Federation


References

1. Строительные нормы и правила, ч. II, разд. В, гл. 1. «Бетонные и железобетонные конструкции. Нормы проектирования» (СНиП II-B.1-62*). М., Стройиздат, 1962.

2. Строительные нормы и правила, ч. II, гл. 21. «Бетонные и железобетонные конструкции. Нормы проектирования» (СНиП 11-21-75). М., Стройиздат, 1976.

3. СНиП 2.03.01.84*. Бетонные и железобетонные конструкции. Госстрой СССР (Государственный комитет Совета Министров СССР по делам строительства), 1989. - 84 с.

4. Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов (к СНиП 2.03.01-84). ЦНИИпромзданий, 1984, часть 1, с. 187.

5. СП 35.13330.2012. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*. / Минстрой России. - М.: 2012 - 214 с.

6. СП 41.13330.2011. Бетонные и железобетонные конструкции гидротехнических сооружений. Актуализированная редакция СНиП 2.06.08-87./ Минрегион России. - М.: 2013-64с.

7. СП 63.13330.2018. Бетонные и железобетонные конструкции. Основные положения. Министерство строительства и жилищно-коммунального хозяйства Российской Федерации, 2018. - 124 с.

8. European committee for standartisation. EN 1992-1-1, Eurocode 2: Design of concrete structures. Part 1 - 1, General rules and rules for buildings.

9. FIB Model Code for concrete structures 2010. International Federation for Structural Concrete (fib) Lausanne, Switzerland, 2013.

10. CEB Bulletin 188 «Fatigue of concrete structures. State-of-the-Art Report», CEB, 1988.

11. Manual for Railway Engineering, American Railway Engineering Association; Chapter 8-Concrete Structures and Foundations, 1990.

12. ACI Committee 301, “Specifications for Structural Concrete for Buildings,” (AC1 301), American Concrete Institute, Detroit, 2015.

13. ACI Committee 318, “Building Code Requirements for Reinforced Concrete,” (ACI 31814), American Concrete Institute, Detroit, 2014.

14. ACI 215R-97 Considerations for Design of Concrete Structures Subjected to Fatigue Loading (Revised 1992/Reapproved 1997).

15. Standard Specifications for Highway Bridges, American Association of State Highway and Transportation Officials, Fourteenth Edition, 1989.

16. Japanese National Railway Design Code for Reinforced Structures and Prestressed Concrete Railway Bridges (April 1983).

17. Japan Society of Civil Engineers, Standard Specification for Design and Construction of Concrete Structures -1986, Part I (Design).

18. West German Code for Prestressed Concrete (DIN 4227, Part I, July 1988).

19. West German Code for Reinforced Concrete (DIN 1045, 1988).

20. Шарипов Р.Ш., Волков Ю.С., Зенин С.А., Крылов С.Б. К вопросу разработки требований к методике расчета железобетонных конструкций при действии многократно повторяющейся нагрузки. Бюллетень строительной техники, №7, 2020, с. 53-56.


Review

For citations:


Sharipov R..., Zenin S..., Krylov S..., Volkov Y... Evaluation of methods for calculating reinforced concrete structural members for the fatigue limit state. Bulletin of Science and Research Center of Construction. 2020;27(4):148-159. (In Russ.) https://doi.org/10.37538/2224-9494-2020-4(27)-148-159

Views: 435


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2224-9494 (Print)
ISSN 2782-3938 (Online)